

research > campaigns

TRACKING AEROSOL CONVECTION INTERACTIONS EXPERIMENT (TRACER)

1 OCTOBER 2021 - 30 SEPTEMBER 2022 Lead Scientist: Michael Jensen Observatory: AMF1, Hou

During the TRacking Aerosol Convection interactions ExpeRiment (TRACER), scientists will use the first ARM Mobile Facility (AMF1), the second–generation C–Band Scanning ARM Precipitation Radar (CSAPR2), and a small satellite (ancillary) site with radiosonde and aerosol measurements to learn more about cloud and aerosol interactions in the deep convection over the Houston, Texas, area.

The Houston region offers a unique environment where isolated convective systems are common and experience a spectrum of polluted aerosol conditions from urban and industrial areas. In addition, surrounding areas also show significantly lower background aerosol concentrations.

The TRACER campaign has been postponed from its originally planned dates due to

CAMPAIGN LINKS

BROWSE DATA

Science Plan Backgrounder Images ARM News ARM News Media NASA TRACER-AQ Page Campaign Dashboard

RELATED CAMPAIGNS

TRACER-NASA 15 July 2022, Munchak

COVID-19 risks associated with the earlier dates. The revised dates for TRACER are October 1, 2021, to September 30, 2022.

TRACER also will include a four-month intensive operational period (IOP). A climatological analysis of radar observations from the Houston/Galveston-area NEXRAD (KHGX) shows that convective initiation occurs in this area on 40 to 55 percent of the days each month of the year. The total number of convective events is strongly peaked during the months of June through September. To capture these events, **the TRACER IOP will run from June 1 to September 30, 2022**.

With this single IOP during the convective season of 2022, this effectively postpones the original TRACER IOP by one year.

The TRACER campaign consists of three primary sites operated by ARM:

- the AMF1 main site (M1) in La Porte, Texas, an area that experiences significant polluted conditions
- the ancillary site (S3) to the southwest of downtown Houston in a rural region with less pollution
- the CSAPR2 site (S2) located approximately midway between the AMF1 and ancillary sites.

The main and CSAPR2 sites will operate during the entire TRACER campaign, while the ancillary site will only operate during the IOP. Operation dates for the three primary sites are as follows:

- Main (M1): October 1, 2021, to September 30, 2022
- CSAPR2 (S2): October 1, 2021, to September 30, 2022
- Ancillary (S3): June 1 to September 30, 2022.

During the IOP, ARM will host many guest experiments and interagency collaborations at the TRACER sites. All three primary sites will hos guest experiments, but most will be at the main site.

In addition, during the 2022 IOP, ARM is planning tethered balloon system (TBS) flights at the ancillary site and a secondary site at Smith Point, Texas, on the eastern shore of Galveston Bay that will be strongly influenced by the bay breeze circulation.

CO-INVESTIGATORS

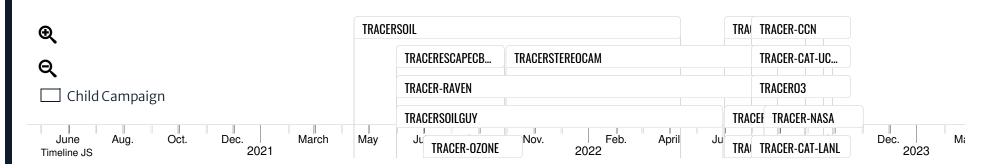
TRACER-Sonde: O3 as a tracer for convective mixing 1 July 2022, Flynn

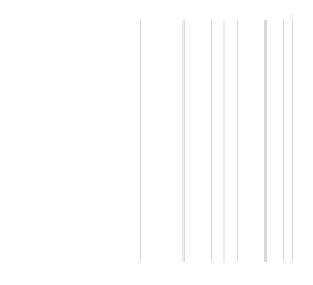
TRACER-MAP: Mapping Aerosol across Houston 1 July 2022, Sheesley

See more (+21

Sarah Brooks	Pavlos Kollias
Don Collins	Chongai Kuang
Scott Collis	Matthew Kumjian
Eric Defer	Toshihisa Matsui
Jiwen Fan	Greg McFarquhar
James Flynn	Chris Nowotarski
Ann Fridlind	Richard Orville
Scott Giangrande	Mariko Oue
Robert Griffin	Anita Rapp
Jiaxi Hu	Daniel Rosenfeld
Robert Jackson	Alexander Ryzhkov

TIMELINE


Jeffrey Snyder Philip Stier Sascha Usenko Sue van den Heever Marcus van Lier-Walqui Adam Varble Yuxuan Wang Guang Zhang Renyi Zhang


Rebecca Sheesley

1 OCTOBER 2021 — 30 SEPTEMBER 2022 **TRACER:** <u>Tracking Aerosol Convection Interactions Experiment</u>

Lead: Jensen, Michael

TRACEI CUB

RELATED PUBLICATIONS

2021

Verde R. 2021. <u>Regimento e Estatuto da Revista Verde.</u> 🔤 Ed. by Programa Escola Verde, Programa Escola Verde. 10.2172/1833860.

Theisen A, A Lindenmaier, J Mather, J Comstock, S Collis, and S Giangrande. 2021. <u>ARM FY2021 Radar Plan.</u> Bed. by Robert Stafford, ARM user facility. DOE/SC-ARM-TR-269.10.2172/1777148.

Fridlind A, C Chiu, S Collis, J Comstock, S Giangrande, N Hickmon, M Jensen, M Kumjian, P Muradyan, R Newsom, A Sockol, M Sturm, and A Theisen. 2021. <u>ARM Cloud and Precipitation Measurements and Science Group (CPMSG) Workshop Report.</u> 🖻 Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-21-005.

2020

Mei F, D Dexheimer, J Fast, M Diao, B Geerts, A Bucholtz, L Riihimaki, C Flynn, T Thornberry, T Campos, S Springston, C Kuang, J Tomlinson, and B Schmid. 2020. <u>ARM Aerial Instrument Workshop Report.</u> 🗟 Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-20-010.

2019

Dorsey K. 2019. <u>Tracking Aerosol Convection interactions ExpeRiment.</u> Be Ed. by Rolanda Jundt, ARM user facility. DOE/SC-ARM-19-024. 10.2172/1570965.

Jensen M, E Bruning, D Collins, A Fridlind, P Kollias, C Kuang, D Rosenfeld, A Ryzhkov, A Varble, SD Brooks, S Collis, E Defer, J Fan, J Flynn, S Giangrande, R Griffin, J Hu, R Jackson, M Kumjian, T Logan, T Matsui, G McFarquhar, C Nowotarski, J Quaas, M Oue, R Sheesley, J Snyder, P Stier, S Usenko, S van den Heever, M van Lier Walqui, Y Wang, Y Xu, and G Zhang. 2019. <u>Tracking Aerosol Convection Interactions</u> <u>ExpeRiment (TRACER) Science Plan.</u> Ed. by Robert Stafford, DOE/SC-ARM-19-017.

Fridlind A, M van Lier-Walqui, S Collis, S Giangrande, R Jackson, X Li, T Matsui, R Orville, M Picel, D Rosenfeld, A Ryzhkov, R Weitz, and P Zhang. 2019. <u>"Use of polarimetric radar measurements to constrain simulated convective cell evolution: A pilot study with Lagrangian tracking.</u>" Atmospheric Measurement Techniques, 12(6), doi:10.5194/amt-12-2979-2019. Research Highlight

VIEW ALL RELATED PUBLICATIONS

HOU DATA SOURCES

NAME	FULL NAME	BROWSE DATA
ACSM	Aerosol Chemical Speciation Monitor	Q Browse Data
ACSMCDCE	ACSM, corrected for composition-dependent collection efficiency	Q Browse Data
AERI	Atmospheric Emitted Radiance Interferometer	Q Browse Data
AETH	Aethalometer	Q Browse Data
AOS	Aerosol Observing System	Q Browse Data
AOSMET	Meteorological Measurements associated with the Aerosol Observing System	Q Browse Data
APS	Aerodynamic Particle Sizer	Q Browse Data

NAME	FULL NAME	BROWSE DATA
CAMSITE	camera that monitors a site area	Q Browse Data
CCN	Cloud Condensation Nuclei Particle Counter	Q Browse Data
CEIL	Ceilometer	Q Browse Data
CO-ANALYZER	Carbon Monoxide Analyzer	Q Browse Data
CPC	Condensation Particle Counter	Q Browse Data
<u>CSPHOT</u>	Sunphotometer	Q Browse Data
DL	Doppler Lidar	Q Browse Data
ECOR	Eddy Correlation Flux Measurement System	Q Browse Data
GNDRAD	Ground Radiometers on Stand for Upwelling Radiation	Q Browse Data
HTDMA	Humidified Tandem Differential Mobility Analyzer	Q Browse Data
IRT	Infrared Thermometer	Q Browse Data
KAZR	Ka ARM Zenith Radar	Q Browse Data
LDIS	Laser Disdrometer	Q Browse Data
LDQUANTS	Laser Disdrometer Quantities	Q Browse Data

NAME	FULL NAME	BROWSE DATA
MAWS	Automatic Weather Station	Q Browse Data
MET	Surface Meteorological Instrumentation	Q Browse Data
MFRSR	Multifilter Rotating Shadowband Radiometer	Q Browse Data
MFRSRLANG	MFRSR Langley analyses and plots	Q Browse Data
MPL	Micropulse Lidar	Q Browse Data
MPLCMASK	Cloud mask from Micropulse Lidar	Q Browse Data
MWR	Microwave Radiometer	Q Browse Data
MWR3C	Microwave Radiometer, 3 Channel	Q Browse Data
MWRHE	Microwave Radiometer – High Frequency	Q Browse Data
NEPHELOMETER	Nephelometer	Q Browse Data
NFOV	Narrow Field of View Zenith Radiometer	Q Browse Data
OZONE	Ozone Monitor	Q Browse Data
PBLHT	Planetary Boundary Layer Height	Q Browse Data
PSAP	Particle Soot Absorption Photometer	Q Browse Data

NAME	FULL NAME	BROWSE DATA
RWP	Radar Wind Profiler	Q Browse Data
SASHE	Shortwave Array Spectroradiometer-Hemispheric	Q Browse Data
SASZE	Shortwave Array Spectroradiometer-Zenith	Q Browse Data
SEBS	Surface Energy Balance System	Q Browse Data
SKYRAD	Sky Radiometers on Stand for Downwelling Radiation	Q Browse Data
<u>SMPS</u>	Scanning mobility particle sizer	Q Browse Data
<u>S02</u>	Sulfur Dioxide Monitor	Q Browse Data
SONDE	Balloon-Borne Sounding System	Q Browse Data
SONDEPARAM	convective parameters derived from radiosonde data	Q Browse Data
STEREOCAM	Stereo Cameras for Clouds	Q Browse Data
TSI	Total Sky Imager	Q Browse Data
UHSAS	Ultra-High Sensitivity Aerosol Spectrometer	Q Browse Data
VDIS	Video Disdrometer	Q Browse Data
VDISQUANTS	Video Disdrometer VAP	Q Browse Data

NAME	FULL NAME	BROWSE DATA
<u>WB</u>	Weighing Bucket Precipitation Gauge	Q <u>Browse Data</u>

ATMOSPHERIC RADIATION MEASUREMENT USER FACILITY

BROOKHAVEN

......

9 of 9